
 

Mathematics Primer for Vector Fields 
        

By Dr. Eugene Patronis 
 
This is the second in a series of articles dealing with coaxial cables operating in the frequency 

span from direct current through the microwave region. In order to make the ideas meaningful to the 
widest audience this article will be devoted to the mathematics necessary to properly describe physical 
variables that have a dimension or unit, a size or magnitude, and a direction in space. 

For the moment we will be concerned with physical variables that fall into two distinctly 
different mathematical categories. The first category includes items such as mass, charge, density, 
pressure, and temperature among others. These are scalar quantities that may have a particular unit but 
otherwise have only a numerical value or magnitude and are subject to the rules of ordinary arithmetic 
and algebra. The second category includes items such as displacement, velocity, acceleration, force, etc. 
These are vector quantities that possess a particular unit, a scalar magnitude, and a direction in space as 
well. Scalar and vector physical variables both may be called field variables if they change as functions 
of position in space and possibly of time. 

Fig. 1 illustrates a graphical technique for adding or subtracting two vectors that is familiar to 
nearly everyone. What we describe here is a more formal technique for making calculations in a fully 
developed three-dimensional space. We will employ Cartesian coordinates at the outset, as these are the 
most familiar while introducing other coordinate systems as the situation dictates. Unit vectors are 
dimensionless vectors having a scalar magnitude of one and whose sole role is to indicate direction 

along a coordinate axis. In Cartesian 
coordinates the unit vectors are usually 
written ˆ ˆ ˆi, j, and k  indicating unit vectors 
along the x, y, and z-axes, respectively. The 
hat symbol above each letter symbolizes that 
the vector is a unit vector having only 
direction. In the Cartesian coordinate system, 
as is true in any set of orthogonal coordinates, 
the unit vectors form a mutually perpendicular 
set. An ordinary vector having magnitude and 
dimension as well as direction is often 
distinguished in printed text by employing a 
boldface symbol or by an arrow or bar over 
the chosen symbol. In this article vector 
quantities will be symbolized by employing a 

boldface letter symbol. As an example, the general vector force in Cartesian coordinates according to 
this notational scheme would be written as x y z

ˆ ˆ ˆF i F j F k! " "F  where Fx is the scalar magnitude of the 
force along the x-coordinate axis and similarly for Fy and Fz. These individual scalar values may be 
either positive or negative. Vector quantities having like dimensions may be added or subtracted. For 
example, consider two vector quantities x y z

ˆ ˆ ˆa i a j a k! " "a  and x y z
ˆ ˆ ˆb i b j b k! " "b  that have the same 

dimensions or units. These two vectors may be added to produce a new vector say 

x x y y z z
ˆ ˆ ˆ(a b )i (a b ) j (a b )k! " " " " "c  with the summation proceeding on a component-by-component 

basis. Similarly, the vector b may be subtracted from a to produce a new vector say 

x x y y z z
ˆ ˆ ˆ(a b )i (a b ) j (a b )k! # " # " #d . The magnitude of a vector a is written as     a ! ax

2 " a y
2 " a z

2 . 

Figure 1. Graphical addition and subtraction of 
vectors. 
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Suppose the vector r represents displacement from the origin with 

ˆ ˆ ˆ3i 4 j 12k! " "r  meters then   r ! 32 " 42 "122 ! 169 !13 meters as the 
magnitude of the total displacement from the origin.  

Three different methods are defined for products involving vectors. 
The first is the multiplication of a vector by an ordinary scalar quantity. This 
is simply a scaling process as 10F is a vector in the direction of F whose 
magnitude has been increased by ten fold. The second is that of the scalar 
product of two vectors. The scalar product of two vectors yields a scalar 
quantity whose magnitude is the product of the magnitudes of the individual 
vectors multiplied by the cosine of the angle included between the directions 
of the individual vectors as shown in Fig.2. Let the two vectors be a and b as 
given above. The scalar product of these two vectors is written as  a$b with 
this product being given by 

 

x y z x y z

x x x y x z y x y y

y z z x z y z z

x x y y z z

ˆ ˆ ˆ ˆ ˆ ˆ(a i a j a k) (b i b j b k)
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa b i i a b i j a b i k a b j i a b j j
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa b j k a b k i a b k j a b k k

a b a b a b

$ ! " " $ " " !

$ " $ " $ " $ " $ "

$ " $ " $ " $ !

" "

a b

 

 
This is true because in the scalar product of a unit vector with itself the included angle is zero for which  
the cosine of the angle is unity and the scalar product of similar unit vectors is thus unity. On the other 
hand, the angle between dissimilar unity vectors is 90° for which the cosine of the angle is zero and the 
scalar product is thus zero. Therefore,  ˆ ˆ ˆ ˆ ˆ ˆi i j j k k 1$ ! $ ! $ !  and ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi j i k j i j k k i k j 0$ ! $ ! $ ! $ ! $ ! $ !    
It should be noted that   a$b ! b$a . The process given above has taken the magnitude of a, multiplied it 
by the magnitude of b, and then multiplied this product by the cosine of the angle between the two 
vectors. 

The third method of multiplying two vectors is termed the vector product. The vector product is 
symbolized by   c ! a %b where c is the product vector, a is the multiplying vector, and b is the 

multiplicand vector. The vector product is itself a vector having a magnitude equal 
to the product of the magnitudes of the individual vectors further multiplied by the 
sine of the angle included between the directions of the individual vectors as shown 
in Fig. 3. Two non-parallel vectors determine the orientation of a plane and the 
product vector of these two vectors is perpendicular to this plane and bears a right-
handed screw relationship with the imagined rotation of the multiplying vector 
toward the multiplicand vector. This is indicated in Fig.3 by the presence of the 
screwhead at the origin. As the tip of a is rotated towards b through the angle & a 
right-handed screw would advance away from the reader. As a consequence, 

    b% a ! #(a %b) ! #c . If x y z
ˆ ˆ ˆa i a j a k! " "a  and x y z

ˆ ˆ ˆb i b j b k! " "b , then the product 
vector c may be calculated by direct expansion as was done in the scalar product 
case with the difference that now one is taking the vector products of the unit 
vectors in each instance rather than the scalar product as was the former case. Now, 
of course, ˆ ˆ ˆ ˆ ˆ ˆi i j j k k 0% ! % ! % !  while ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi j k,  j k i, and k i j.% ! % ! % !  Further, 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi k j,  j i k,  and k j i.% ! # % ! # % ! #  Rather than calculating by direct expansion a somewhat speedier 
calculation is possible by means of the determinant 

Figure 2. Scalar 
product of two vectors. 
 

Figure 3. Vector 
product of two 
vectors. 
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Figure 4. The 
calculation of 
work involves a 
scalar product. 
 

x y z

x y z

ˆ ˆ ˆi   j   k
a  a  a

b  b  b

. 

 
Evaluation of the three by three determinant according to the usual rules yields 
correctly y z y z z x z x x y x y

ˆ ˆ ˆ(a b b a )i (a b b a ) j (a b b a )k! # " # " #c . Note that if a and b 
each are displacement vectors then the magnitude of the vector c is the area of a 
parallelogram having a and b as sides. The truly unique property of vectors is the 
manner in which they transform from one coordinate system to another. This 
transformation property is such that the vector magnitude and direction remain 
unchanged under coordinate transformation. This will be explored at the 
appropriate time.  

Imagine that you are exerting a constant force of magnitude F in pushing 
a loaded wheelbarrow across a horizontal surface through an extended distance 
along the horizontal of an amount l. The calculation of the work done by your 
applied force in the process is an example of the scalar product of two vectors. 

The force that you apply has both an upward component because you must lift the handles of the 
wheelbarrow and a horizontal component in urging the wheelbarrow in the forward horizontal direction. 
If the vector F represents the total force and the vector l represents the subsequent displacement of the 
wheelbarrow along the horizontal then the work performed is given by the scalar product contained in 
      W ! F$ l . This is depicted in Fig. 4. Notice in the figure that multiplying the magnitude of the force by 
the cosine of the angle & selects the component of the force that is along the horizontal so that the scalar 
amount of work is W=Fl cos(&). A more realistic example would be one where the force that you have 
to exert varies dependent on where you are located along the horizontal path. In such an instance we 
must sum all of the increments of work performed in bringing about the total amount of horizontal 

displacement. This is done by integration along the horizontal path given by 
      

dW ! F $dl
i

f

'
i

f

'  where i 

represents the coordinates of the initial point and f those of the final point defining the horizontal path. 
Such an integral is called a line integral.  An example of the vector product is depicted in Fig. 5 where 

one desires to calculate the vector force F experienced by a 
length l of straight wire conducting a steady current I in a 
region over which there is a uniform magnetic induction 
described by the vector B. In this instance, a vector Il spatially 
describes the current carrying conductor. This vector lies along 
the length of the conductor and points in the positive sense of 
the current. The force experienced by the conductor is given by 
   F ! Il %B and has a scalar magnitude F= Il Bsin(&). Note that 

if the length of the conductor were parallel to the direction of 
the magnetic induction the angle & would be zero and there 
would be no force. Note also from the figure that if the sense of 
the current were reversed, the direction of the force would 
reverse also. 

Special methods are also required in the calculus of vectors. These methods involve the 
introduction of a vector differential operator termed del or sometimes nabla that is commonly 
symbolized by an inverted Greek letter delta written as ( . In Cartesian coordinates the vector operator 

Figure 5. The magnetic force on current 
carrying conductor involves a vector 
product with the force on the current 
element being towards the reader. 
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del appears as ˆ ˆ ˆi j k
x y z
) ) )
) ) )

( ! " "  where the indicated derivative operators are partial derivatives. 

This operator may be applied to both vector and scalar field quantities in a number of ways. Remember 
a field quantity is a physical variable that varies from point to point in space and may or may not also 
vary in time. Vector field quantities also have direction whereas scalar field quantities have no direction. 
As an example of a scalar field quantity suppose we know the temperature distribution in a room where 
the z-coordinate describes elevation and the x and y coordinates pinpoint location in a horizontal plane 
at some instant of time. This knowledge is expressed in a mathematical function T. T is a function of the 
spatial coordinates so we say T= T(x,y,z). With ordinary heating and cooling systems we would expect 
that the temperature in a plane would not vary dramatically from point to point but that it may vary 
rather markedly as we vary the elevation of the point of observation. We seek the answer to the 
following questions. What is the direction of the maximum increase in the function T and what is the 
magnitude of the rate of increase or slope along this direction? These questions are answered by the 
gradient of T written as   (T . 

T T Tˆ ˆ ˆT i j k
x y z

) ) )
) ) )

( ! " "  

We see that the gradient of the scalar temperature function is itself a vector. The direction of this vector 
is that of the maximum rate of change of the function T and the magnitude of this vector is the 
maximum slope of the function T. This gradient operator will be very important when we study the 
electric field and the associated scalar electric potential function. 

The del operator may be applied to a vector field in two different ways. The first way involves 
the calculation of the divergence of the vector field quantity. Suppose we have a vector field that is 
described by ˆ ˆ ˆ(x, y, z) ix jy kz! " "v = v . This is just a vector displacement field whose magnitude 
grows linearly with distance from the origin. The divergence of this vector field is written as  ($ v and 
is calculated as 

x y zˆ ˆ ˆ ˆ ˆ ˆ(i j k ) (ix jy kz) 3
x y z x y z
) ) ) ) ) )
) ) ) ) ) )

($ ! " " $ " " ! " " !v . 

This measures the combined growth rates of the individual scalar 
components along the respective coordinate axes of the vector.  ($ v is 
itself a scalar quantity. The positive divergence of a vector field as is the 
case here indicates the presence of a source of the field. A negative 
divergence would be indicative of a sink of the associated vector field. 

The second way of applying the del operator to a vector field is 
through the calculation of the curl of the vector field quantity. The curl of 
a vector field is itself a vector and measures the space rate of change that 
occurs at right angles to the direction of the original vector at a given 
point. Let v now be x y z

ˆ ˆ ˆiv jv kv" " . The curl of v is written as  ( % v and 
is calculated as the determinant 

x y z

ˆ ˆ ˆi       j     k

  
x y z

v    v    v

) ) )
) ) )

(% !v . 

This will be much more meaningful if we examine a physical example that is depicted in Fig. 6. This 
figure depicts a velocity field in a river as a function of the elevation above the bed of the center of the 
stream in a region where the river is straight and the riverbanks are parallel. The elevation above the bed 

Figure 6. Graphical 
example of a vector 
field having curl. 
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is the z-coordinate and the stream flow is along the positive x-coordinate. The y-axis is into the paper 
and has a constant value of zero for the stream center. As a result of viscous effects the stream velocity 
is zero on the riverbed and grows linearly with elevation until the surface is met. The velocity field in 
the region of 0 ! z ! 10 feet, the depth of the river, is then ˆ ˆ ˆi z j0 k0" "v = a  where a is a constant equal 

to 0.5 (mile hour-1foot-1). Clearly, the stream velocity 
is in the direction of the x-axis and has a value that 
only depends on elevation with a maximum value of 5 
miles per hour. Upon substitution of îaz!v  into the 
determinant expressing the curl of v it is found that 

ĵa(% !v . Note that the curl of v at all points is 
everywhere perpendicular to v. Fig. 6 indicates the 
presence of a paddle wheel adjacent to the velocity 
field in the drawing. The axis of the paddle wheel 
passes into and out of the paper in its present location. 
This is a useful graphical aid in determining the 
existence of a curl associated with a vector field. If the 
paddle wheel were exposed to the vector field as 
shown the wheel would rotate in a clockwise 
direction. A right-handed screw rotated in such a 
manner would advance into the paper along the 
positive y-axis that is in the direction of the curl. If the 
axis of the paddle wheel were along either the x-axis 
or the z-axis, the velocity field would not rotate the 
wheel. 

We will close this article with one of the 
fundamental theorems of vector analysis called the gradient theorem. There are two other fundamental 
theorems associated with the application of the del operator called the divergence theorem and curl 
theorem that we will encounter next time in connection with learning about the electric field. Fig. 7 
depicts a possible path between two points located in a three-dimensional space such as the room 
mentioned earlier where the scalar temperature field is T = T(x,y,z). The path depicted in Fig. 7 may be 
described as accurately as you please by differential vector displacements dl each of which is tangent to 
the actual path at each point in question. Now  (T  is a vector whose magnitude and direction at any 
point is that of the maximum space rate of change of the temperature at that point. Therefore, the change 
in temperature when undergoing the differential displacement dl will be given by the scalar product of 
  (T  with the vector dl or     dT = (T $dl . The function dT is itself a function of the space coordinates x,y, 
and z and if we simply require that it be an integrable function then if we integrate dT along the path 
from the initial point i to the final point f we obtain the result  

    
dT ! (T $dl ! T(f ) # T(i)

i

f

'
i

f

' . 

The conclusion indicates that the temperature difference between the ending point and the starting point 
depends only on the difference between the temperature field function evaluated at the points in question 
and is independent of the path chosen between the two points in question. Finally, if the initial point and 
the final point are one and the same point as implied by the circle on the integral symbol below, we may 
conclude that the integral along a path that closes on itself will be 

    (T $dl' ! 0 . 
  

 

Figure 7. The line integral of the 
gradient of a scalar field is 
independent of the path. 
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