
Gauss’s Law and the Electrostatic Field

The concept of the electric field may be hazy to some readers so we will begin by

reviewing some fundamentals. I am assuming that everyone is familiar with the fact that

electric charge exists in two fundamental forms termed positive and negative as originally

suggested by Benjamin Franklin and that physical materials can be distinguished

electrically as being either conductors, insulators, semiconductors, or very rarely

superconductors.

As early as 1785 Charles Augustin Coulomb had performed a series of experiments that

led him to what is now called Coulomb’s Law. This law states that the mutual electrical

force of attraction or repulsion between two electrically charged particles when at rest is

directly proportional to the product of the amount of the individual charges and is

inversely proportional to the square of the distance between the locations of the particles.

Furthermore, similarly charged particles experience a repulsive force whereas oppositely

charged particles experience an attractive force with the line of action of the force being

that of a line drawn connecting the locations of the two particles. When stated as an

equation employing modern terminology and SI units for charged particles located in a

vacuum Coulomb’s Law becomes
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In this equation, F is the mutual force experienced by each charged particle. When the

individual charges have the same algebraic sign F will be positive. This means that the

forces are repulsive acting to increase the distance between the charges. When the

charges have opposite algebraic signs, F will be negative. This means that the forces are

attractive acting to decrease the distance between charges. The charges are measured in

Coulombs, r is measured in meters, and !0 is 8.85(10
-12
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charges located in a vacuum and with negligible change for charges located in air. The

force description is summarized in Fig. 1.
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Figure 1. Examples of Coulomb’s law.



In all instances of Fig.1 the force experienced by the charge q1 is F1 while that

experienced by q2 is F2. It should be noted that in each case F1 is oppositely directed to F2

in agreement with Newton’s third law. The forces depicted in Fig.1 are electrostatic

forces as the charges are at rest. If the charges had been in relative motion magnetic

forces could also come into play. In 1831 as a result of his studies of magnetism, Faraday

introduced the concept of a field of force as a way of visualizing the interaction between

magnets and current carrying conductors. Later on Maxwell provided a quantitative

mathematical foundation for Faraday’s field concept as applied to both magnetism as

well as electricity. In the electric field concept, the conditions in the space surrounding an

electric charge are altered by the mere presence of the charge. Let the quantity of positive

charge in Fig. 2 be of an appreciable amount q1 that is fixed in position and let us explore

the conditions in the space surrounding the location of q1 with the aid of another amount

of movable positive test charge q2. For each point at which we place q2 with q2 at rest we

measure both the direction and magnitude of the force experienced by q2. We then divide

the magnitude of the measured force at each location by the size of q2. The pattern

depicted in Fig. 2 summarizes our results as viewed in any plane centered on q1. When

viewing Fig. 2, the reader must imagine that the lines in the figure extend indefinitely far

in the directions indicated by the arrows.

Figure 2. Electrostatic field of a positive monopole.

This structure is called a positive static electric monopole. In three dimensions with q1

represented by a small sphere the pattern would be that of a fixed number of uniformly

distributed radii diverging from the center of the sphere. This pattern indicates not only

the direction but can also represent the magnitude of the electrical force per unit charge in

the space surrounding the source charge q1 provided that we let the number of diverging

lines be proportional to the size of q1. In order to understand this, imagine that we enclose

q1 by a second larger spherical surface whose radius is r and with the second sphere being



centered on the location of q1. When q2 is placed anywhere on the second sphere’s

surface it will experience a repulsive force 
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The electric field strength E at the location of q2 in this simple case is obtained by

dividing F2 by q2 resulting in
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The expression for the magnitude of E given immediately above is exactly correct for the

chosen simple example. Returning to the simple example, if now we multiply E by the

surface area of the surrounding sphere whose radius is r we will obtain a quantity called

the flux of the electric field through the surrounding surface. With the flux of the electric

field being denoted as " and the surface area as S then
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The conclusion in this simple case is if the number of lines drawn emanating radially

from the charged particle is proportional to the charge of the particle, with the constant of

proportionality being
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then the flux density or flux per unit area at any point on the surface of the surrounding

sphere is equal to the strength of the electric field at that point. The simplicity of this case

can be misleading. Henceforth, we will represent vector quantities by bold-faced type and

the magnitude of such quantities by normal typeface. The electric field is a vector

quantity and its direction must always be taken into account. Mathematically, any

infinitesimally small area located on the surface of the surrounding sphere is also

represented by a vector quantity. This differential of area written as a vector would

appear as dS. The direction of this element of area vector is along the outwardly pointing

perpendicular to the closed surface. Unlike scalar quantities, that is, quantities that have

only a magnitude and no direction, vector quantities can be multiplied in two uniquely

different ways called the dot or scalar product and the cross or vector product. In this

instance we are interested in the scalar product written as E•dS. The magnitude of this

product is the magnitude of the electric vector multiplied by the magnitude of the element

of area vector times the cosine of the angle between the directions of the two vectors

written as EdScos(#). In the example given above E is everywhere normal to the surface

of the surrounding sphere and of constant magnitude and the same can be said of dS so

the angle between the two vectors at all points on the surface will be zero and the cosine

of the angle will be unity. The correct mathematical statement of our calculation would

then appear as
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where the circle on the integral sign means that the integration is carried out on a closed

surface. In this simple case, the integration is quite easy because the magnitude of the

electric field is constant everywhere on the surface and its direction is everywhere

parallel to the differential of area so the value of the integral is just ES. Suppose,



however, the center of the surrounding sphere had been unwisely chosen to be slightly

offset from the location of the charge. In such an instance a very difficult integration

would be required because E would be changing in both magnitude and direction from

point to point on the surface of the offset spherical surface. However, the same result

would ultimately be obtained because the same number of lines of flux still originates

from q1 and this flux ultimately passes out through the offset enclosing surface. Our

equation for the electric flux is a special case of a general law called Gauss’s Law that

states
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This law states the net flux of the electric field through any closed surface is equal to the

density of all charges divided by the electric permittivity of a vacuum integrated

throughout the volume defined by the closed surface. In many cases the statement can be

abbreviated as simply
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where " is the net flux through the closed surface and q is the net charge contained

within the closed surface. A positive value for " corresponds to an outwardly directed

field and a net positive charge. A negative value for " would correspond to an inwardly

directed field and a net negative charge. Both the flux and the charge are scalar

quantities. They behave as simple algebraic quantities but have no direction. Fig. 3 is a

hand drawn sketch of the electric field in a plane containing two equal positive charges.

Note that in Fig. 3 the total flux is doubled if a single surface encloses both charges as

compared with only one charge being enclosed. Fig. 4 is a hand drawn sketch of the

electric field in a plane containing both a positive charge as well as a negative charge of

equal absolute magnitude. This structure is called a static electric dipole. Note that here

the net flux through any surface that encloses both charges is zero.

Figure 3. Two equal positive charges.          Figure 4. Electric dipole.

An electric dipole is characterized by what is called its dipole moment. The dipole

moment is the product of the distance d between the individual charges constituting the

dipole and the size of the positive charge. If r is taken to be the distance from the center



of the dipole, then when r is much greater than d, the electric field of the static electric

dipole diminishes as r
-3

 rather than as r
-2

 as is true for the electric monopole. In the

general case where the origin of the electric field may be several discrete charges or even

a continuous distribution of charge either on a surface or throughout a volume all of

which are at rest, the electric field is defined to be the value of
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where F is the net electric force exerted by the distribution on a small test charge qt. The

unit of E is a Newton per Coulomb, which is the same as a volt per meter. The equation
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is the integral form of one of Maxwell’s famous equations. We may convert it to the

differential form by employing a general theorem governing vector fields known as the

divergence theorem that states
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This allows us to write
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Finally, since the size of the volume of integration is arbitrary, the statement holds for

any volume, which can only be true if the integrands are equal. Therefore,
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Now we will attempt to apply what we have learned so far to a real physical

object. Suppose we have a long, straight copper wire and an equally long hollow copper

cylinder having a thin wall. The wire is along the central axis of the cylinder so that we

now have a coaxial pair of conductors with each conductor being initially uncharged.

Copper is an excellent conductor of electricity and an isolated atom of copper has 29

electrons each of which is strongly bound to the nucleus of the atom and resides in a

discrete energy level. This situation changes when something of the order of Avogadro’s

number of copper atoms is brought together to form a metallic solid of copper wire or

cylinder. The interaction of the copper atoms with their many neighbors causes the

discrete energy levels of the electrons farthest from the nucleus to be smeared into energy

bands. The outermost or most energetic band is called the conduction band. Any

electrons in this band though attached to the structure as a whole are not attached to a

particular nucleus and can move under the influence of an applied electric field

throughout the extent of the entire conductor. The next lower band in terms of overall

energy is called the valence band and for copper as well as other metallic conductors the

valence band and the conduction band have overlapping ranges in energy. The mobile

charges responsible for conduction in metallic solids are of course electrons. Contrast this

with the case of insulators where the valence band is completely occupied with electrons

and there exists a large forbidden energy gap above the valence band before reaching the

empty conduction band. Even the best insulators can conduct weakly due in part to the

presence of impurities but also because of surface contamination and environmental



influences. Gases particularly at low pressures can be made to conduct and the mobile

charges are both positive and negative ions as well as free electrons. Charges of opposite

signs in conducting gases move in opposite directions under the influence of the local

electric field. Conducting liquids are called electrolytes and here again both positive and

negative ions participate in the conduction process.

Fig. 5 is a description of a short length l of coaxial cable that is located near the midpoint

of a long cable having the same structure. The left portion of the figure depicts a sectional

view along this length of the cable while the right portion is an end view of the cable. The

natural coordinates to be employed here are cylindrical coordinates and the figure

facilitates the determination of the relationship between cylindrical and Cartesian

coordinates of an arbitrary spatial point in or on the cable. In cylindrical coordinates the

location of an arbitrary point is expressed in terms of r, $, and z where r and $ are the

radial and angle coordinates in a plane perpendicular to the cylinder axis at the point z.

From Fig. 5 it is seen that the relationships between the Cartesian and cylindrical

coordinates are
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Figure 5. Section of a coaxial cable of length l.

Now we want to examine the ultimate consequence of connecting a source of electrical

energy between the central conductor and the outer conductor of the coaxial cable. The

source in this instance can be quite simple such as an ordinary D cell whose positive

terminal is connected in series through a resistance R to the central conductor of the cable

while the negative terminal of the cell is connected to the outer conductor. Although we

will ultimately investigate the transient behavior that occurs immediately after the
connection is made we now are interested in the steady state behavior with the source at

one end of the long cable and with nothing connected to the other end. The ultimate

action of the source will have been to remove a quantity of negative charge from the

central conductor and deposit this same quantity of negative charge on the outer

conductor. The immediate question to be answered in detail is what is the charged state of

each conductor and where is this charge located when it ultimately comes to rest?  Since

the source has removed negative charge from the central conductor this conductor now

has an excess positive charge and the outer conductor has an excess negative charge of



the same size. Let the total quantity of charge moved by the source be designated as –Q.

The central coax section having a length l bears only a fraction of this charge, which we

designate as q. The central conductor of the coax section then has a positive charge q

while its outer conductor has a charge –q. If the excess charge associated with the central

conductor were located in its interior then an electric field would exist there and charges

would be in motion under the influence of this field. In order for this charge to be at rest

it must reside on the outer surface of the central conductor and the electric field for which

this charge is the source must be everywhere perpendicular to the surface of the central

conductor. If the field were not normal to the surface, it would have a tangential

component that could exert force on charge at the surface of the conductor and cause that

charge to be in motion. The mutual attraction between the negative charge on the outer

conductor and the positive charge on the surface of the inner conductor will cause the

negative charge associated with the outer conductor to distribute itself on the inner

surface of the outer conductor. The electric flux that originates at the outer surface of the

inner conductor will terminate at the inner surface of the outer conductor while being

perpendicular to the outer conductor’s inner surface. Thus when the transferred charge

comes to rest a static electric field will exist in the region between the two conductors

that has only a radial component. Fig. 6 is an end view of the cable section illustrating the

radial lines of the electric field originating at the outer surface of the inner conductor and

terminating on the inner surface of the outer conductor.

Figure 6. Radial electrostatic field of a charged cable section.

Also shown in the figure is a red circle that represents the end of a closed coaxial

cylindrical surface of radius r that extends for a distance l along the cable. The lateral

surface area of this cylinder is 2%rl and the electric field is everywhere perpendicular to

this lateral surface. Gauss’s law tells us that the flux through this surface is
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This allows us to state that the flux density or the electric field strength for a radial

distance r in the range a ! r ! b is given by
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ˆ r  is a unit vector in the radial direction. Furthermore, the electric field is 0 in the

interior of the central conductor where r < a as well as the interior of the outer conductor

where b < r < c. In closing this article we need to make one more calculation and make a



related important definition. The calculation is that of the scalar potential difference,

expressed in volts, between the center conductor and the outer conductor that has arisen

because of the present charge distribution. This is denoted as Vab. The proof of the

following statement will be supplied at the beginning of the next article in this series.
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In the above equation, the term ln(  ) stands for the natural logarithm of the parenthetical

quantity. Finally, the electrical capacitance, expressed in farads, of the section of coaxial

cable of length l is defined to be the ratio of the transferred charge of the conductors

divided by the resulting potential difference between the conductors or
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